next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.00009021 seconds elapsed
 -- 0.000726514 seconds elapsed
 -- 0.000207292 seconds elapsed
 -- 0.00008062 seconds elapsed
 -- 0.000852934 seconds elapsed
 -- 0.000172971 seconds elapsed
 -- 0.0000457 seconds elapsed
 -- 0.0000451 seconds elapsed
 -- 0.000118641 seconds elapsed
 -- 0.000061841 seconds elapsed
 -- 0.000568202 seconds elapsed
 -- 0.000137801 seconds elapsed
 -- 0.000060141 seconds elapsed
 -- 0.000538122 seconds elapsed
 -- 0.000132141 seconds elapsed
 -- 0.00005564 seconds elapsed
 -- 0.000519002 seconds elapsed
 -- 0.000135061 seconds elapsed
 -- 0.00005721 seconds elapsed
 -- 0.000589353 seconds elapsed
 -- 0.00014239 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.00009002 seconds elapsed
 -- 0.000644934 seconds elapsed
 -- 0.000171781 seconds elapsed
 -- 0.000075982 seconds elapsed
 -- 0.000623771 seconds elapsed
 -- 0.00016828 seconds elapsed
 -- 0.00015223 seconds elapsed
 -- 0.000854013 seconds elapsed
 -- 0.000271501 seconds elapsed
 -- 0.000079149 seconds elapsed
 -- 0.000529672 seconds elapsed
 -- 0.000138089 seconds elapsed
 -- 0.00005444 seconds elapsed
 -- 0.000508023 seconds elapsed
 -- 0.000129971 seconds elapsed
 -- 0.00005541 seconds elapsed
 -- 0.000547582 seconds elapsed
 -- 0.000137591 seconds elapsed
 -- 0.00006017 seconds elapsed
 -- 0.000649311 seconds elapsed
 -- 0.0001361 seconds elapsed
 -- 0.0000541 seconds elapsed
 -- 0.000545962 seconds elapsed
 -- 0.00013183 seconds elapsed
 -- 0.000066311 seconds elapsed
 -- 0.000527312 seconds elapsed
 -- 0.000135781 seconds elapsed
 -- 0.000055761 seconds elapsed
 -- 0.000525162 seconds elapsed
 -- 0.000131461 seconds elapsed
 -- 0.000056509 seconds elapsed
 -- 0.000518492 seconds elapsed
 -- 0.000133681 seconds elapsed
 -- 0.00005529 seconds elapsed
 -- 0.000539334 seconds elapsed
 -- 0.000134029 seconds elapsed
 -- 0.00005741 seconds elapsed
 -- 0.000785124 seconds elapsed
 -- 0.000226601 seconds elapsed
 -- 0.000051772 seconds elapsed
 -- 0.000962215 seconds elapsed
 -- 0.000220861 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.