
1 logit.bayes: Bayesian Logistic Regression

Logistic regression specifies a dichotomous dependent variable as a function of
a set of explanatory variables using a random walk Metropolis algorithm. For
a maximum likelihood implementation, see Section ??.

1.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "logit.bayes", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

1.2 Additional Inputs

Use the following arguments to monitor the Markov chain:

• burnin: number of the initial MCMC iterations to be discarded (defaults
to 1,000).

• mcmc: number of the MCMC iterations after burnin (defaults to 10,000).

• thin: thinning interval for the Markov chain. Only every thin-th draw
from the Markov chain is kept. The value of mcmc must be divisible by
this value. The default value is 1.

• tune: Metropolis tuning parameter, either a positive scalar or a vector
of length k, where k is the number of coefficients. The tuning parameter
should be set such that the acceptance rate of the Metropolis algorithm
is satisfactory (typically between 0.20 and 0.5) before using the posterior
density for inference. The default value is 1.1.

• verbose: defaults to FALSE. If TRUE, the progress of the sampler (every
10%) is printed to the screen.

• seed: seed for the random number generator. The default is NA which
corresponds to a random seed of 12345.

• beta.start: starting values for the Markov chain, either a scalar or vector
with length equal to the number of estimated coefficients. The default is
NA, such that the maximum likelihood estimates are used as the starting
values.

Use the following parameters to specify the model’s priors:

• b0: prior mean for the coefficients, either a numeric vector or a scalar. If
a scalar value, that value will be the prior mean for all the coefficients.
The default is 0.
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• B0: prior precision parameter for the coefficients, either a square matrix
(with the dimensions equal to the number of coefficients) or a scalar. If a
scalar value, that value times an identity matrix will be the prior precision
parameter. The default is 0, which leads to an improper prior.

1.3 Examples

1. Basic Example
Attaching the sample dataset:

> data(turnout)

Estimating the logistic regression using logit.bayes:

> z.out <- zelig(vote ~ race + educate, model = "logit.bayes",

+ data = turnout, verbose = FALSE)

How to cite this model in Zelig:

Ben Goodrich, and Ying Lu. 2013.

"logit.bayes: Bayesian Logistic Regression for Dichotomous Dependent Variables"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

Convergence diagnostics before summarizing the estimates:

> geweke.diag(z.out$result$coefficients)

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

(Intercept) racewhite educate

1.8457 0.1102 -1.8773

> heidel.diag(z.out$result$coefficients)

Stationarity start p-value

test iteration

(Intercept) passed 1 0.430

racewhite passed 1 0.323

educate passed 1 0.345

Halfwidth Mean Halfwidth

test

(Intercept) passed -1.220 0.01433

racewhite passed 0.508 0.00938

educate passed 0.161 0.00107

> raftery.diag(z.out$result$coefficients)

2



Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

Burn-in Total Lower bound Dependence

(M) (N) (Nmin) factor (I)

(Intercept) 21 22362 3746 5.97

racewhite 20 21329 3746 5.69

educate 18 19684 3746 5.25

> summary(z.out)

Call: zelig(formula = vote ~ race + educate, model = "logit.bayes",

data = turnout, verbose = FALSE)

Iterations = 1001:11000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

Mean, standard deviation, and quantiles for marginal posterior distributions.

Mean SD 2.5% 50% 97.5%

(Intercept) -1.2196 0.2197 -1.6679 -1.2134 -0.7968

racewhite 0.5078 0.1393 0.2326 0.5071 0.7889

educate 0.1606 0.0169 0.1289 0.1599 0.1948

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given
x.out.

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)

Model: logit.bayes

Number of simulations: 1000

Values of X

(Intercept) racewhite educate

1 1 1 12.06675

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race

[1] "contr.treatment"
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Expected Value: E(Y|X)

mean sd 50% 2.5% 97.5%

1 0.773 0.011 0.773 0.752 0.794

Predicted Value: Y|X

0 1

1 0.229 0.771

2. Simulating First Differences
Estimating the first difference (and risk ratio) in individual’s probability
of voting when education is set to be low (25th percentile) versus high
(75th percentile) while all the other variables held at their default values.

> x.high <- setx(z.out, educate = quantile(turnout$educate, prob = 0.75))

> x.low <- setx(z.out, educate = quantile(turnout$educate, prob = 0.25))

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

Model: logit.bayes

Number of simulations: 1000

Values of X

(Intercept) racewhite educate

1 1 1 14

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race

[1] "contr.treatment"

Values of X1

(Intercept) racewhite educate

1 1 1 10

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race

[1] "contr.treatment"

Expected Value: E(Y|X)
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mean sd 50% 2.5% 97.5%

1 0.823 0.011 0.823 0.802 0.844

Predicted Value: Y|X

0 1

1 0.178 0.822

Expected Value (for X1): E(Y|X1)

mean sd 50% 2.5% 97.5%

1 0.71 0.013 0.71 0.682 0.735

Predicted Value (for X1): Y|X1

0 1

1 0.286 0.714

First Differences: E(Y|X1)-E(Y|X)

mean sd 50% 2.5% 97.5%

1 -0.113 0.012 -0.112 -0.138 -0.09

1.4 Model

Let Yi be the binary dependent variable for observation i which takes the value
of either 0 or 1.

• The stochastic component is given by

Yi ∼ Bernoulli(πi)

= πYi
i (1− πi)1−Yi ,

where πi = Pr(Yi = 1).

• The systematic component is given by

πi =
1

1 + exp(−xiβ)
,

where xi is the vector of k explanatory variables for observation i and β
is the vector of coefficients.

• The prior for β is given by

β ∼ Normalk
(
b0, B

−1
0

)
where b0 is the vector of means for the k explanatory variables and B0 is
the k × k precision matrix (the inverse of a variance-covariance matrix).
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1.5 Quantities of Interest

• The expected values (qi$ev) for the logit model are simulations of the
predicted probability of a success:

E(Y ) = πi =
1

1 + exp(−xiβ)
,

given the posterior draws of β from the MCMC iterations.

• The predicted values (qi$pr) are draws from the Bernoulli distribution
with mean equal to the simulated expected value πi.

• The first difference (qi$fd) for the logit model is defined as

FD = Pr(Y = 1 | X1)− Pr(Y = 1 | X).

• The risk ratio (qi$rr)is defined as

RR = Pr(Y = 1 | X1) / Pr(Y = 1 | X).

• In conditional prediction models, the average expected treatment effect
(qi$att.ev) for the treatment group is

1∑
ti

∑
i:ti=1

[Yi(ti = 1)− E[Yi(ti = 0)]],

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups.

• In conditional prediction models, the average predicted treatment effect
(qi$att.pr) for the treatment group is

1∑
ti

∑
i:ti=1

[Yi(ti = 1)− ̂Yi(ti = 0)],

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups.

1.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run

z.out <- zelig(y ~ x, model = "logit.bayes", data)

then you may examine the available information in z.out by using names(z.out),
see the draws from the posterior distribution of the coefficients by using
z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.
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• From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the esti-
mated parameters.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.

• From the sim() output object s.out:

– qi$ev: the simulated expected values(probabilities) for the specified
values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first difference in the expected values for the
values specified in x and x1.

– qi$rr: the simulated risk ratio for the expected values simulated
from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the
treated from conditional prediction models.

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

See also

Bayesian logistic regression is part of the MCMCpack library by Andrew D.
Martin and Kevin M. Quinn [1]. The convergence diagnostics are part of the
CODA library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines
[2].
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2 mlogit.bayes: Bayesian Multinomial Logistic
Regression

Use Bayesian multinomial logistic regression to model unordered categorical
variables. The dependent variable may be in the format of either character
strings or integer values. The model is estimated via a random walk Metropo-
lis algorithm or a slice sampler. See Section ?? for the maximum-likelihood
estimation of this model.

2.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "mlogit.bayes", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

2.2 Additional Inputs

zelig() accepts the following arguments for mlogit.bayes:

• baseline: either a character string or numeric value (equal to one of the
observed values in the dependent variable) specifying a baseline category.
The default value is NA which sets the baseline to the first alphabetical or
numerical unique value of the dependent variable.

The model accepts the following additional arguments to monitor the Markov
chains:

• burnin: number of the initial MCMC iterations to be discarded (defaults
to 1,000).

• mcmc: number of the MCMC iterations after burnin (defaults to 10,000).

• thin: thinning interval for the Markov chain. Only every thin-th draw
from the Markov chain is kept. The value of mcmc must be divisible by
this value. The default value is 1.

• mcmc.method: either "MH" or "slice", specifying whether to use Metropo-
lis Algorithm or slice sampler. The default value is "MH".

• tune: tuning parameter for the Metropolis-Hasting step, either a scalar or
a numeric vector (for k coefficients, enter a k vector). The tuning param-
eter should be set such that the acceptance rate is satisfactory (between
0.2 and 0.5). The default value is 1.1.

• verbose: defaults to FALSE. If TRUE, the progress of the sampler (every
10%) is printed to the screen.

• seed: seed for the random number generator. The default is NA which
corresponds to a random seed of 12345.
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• beta.start: starting values for the Markov chain, either a scalar or a
vector (for k coefficients, enter a k vector). The default is NA where the
maximum likelihood estimates are used as the starting values.

Use the following arguments to specify the priors for the model:

• b0: prior mean for the coefficients, either a scalar or vector. If a scalar,
that value will be the prior mean for all the coefficients. The default is 0.

• B0: prior precision parameter for the coefficients, either a square matrix
with the dimensions equal to the number of coefficients or a scalar. If
a scalar, that value times an identity matrix will be the prior precision
parameter. The default is 0 which leads to an improper prior.

Zelig users may wish to refer to help(MCMCmnl) for more information.

2.3 Examples

1. Basic Example
Attaching the sample dataset:

> data(mexico)

Estimating multinomial logistics regression using mlogit.bayes:

> z.out <- zelig(vote88 ~ pristr + othcok + othsocok, model = "mlogit.bayes",

+ data = mexico)

Calculating MLEs and large sample var-cov matrix.

This may take a moment...

Inverting Hessian to get large sample var-cov matrix.

How to cite this model in Zelig:

Ben Goodrich, and Ying Lu. 2013.

"mlogit.bayes: Bayesian Multinomial Logistic Regression for Dependent Variables with Unordered Categorical Values"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

Checking for convergence before summarizing the estimates:

> heidel.diag(z.out$result$coefficients)

Stationarity start p-value

test iteration

(Intercept).2 passed 1 0.712

(Intercept).3 passed 1 0.263

pristr.2 passed 1 0.678

pristr.3 passed 1 0.530
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othcok.2 passed 1 0.978

othcok.3 passed 1 0.258

othsocok.2 passed 1 0.633

othsocok.3 passed 1 0.357

Halfwidth Mean Halfwidth

test

(Intercept).2 passed -2.484 0.00822

(Intercept).3 passed -2.882 0.00848

pristr.2 passed -0.726 0.00196

pristr.3 passed -0.601 0.00191

othcok.2 passed 1.109 0.00235

othcok.3 passed 1.250 0.00236

othsocok.2 passed 0.352 0.00325

othsocok.3 passed 0.302 0.00295

> raftery.diag(z.out$result$coefficients)

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

Burn-in Total Lower bound Dependence

(M) (N) (Nmin) factor (I)

(Intercept).2 6 7195 3746 1.92

(Intercept).3 8 9554 3746 2.55

pristr.2 7 7534 3746 2.01

pristr.3 8 10866 3746 2.90

othcok.2 6 7984 3746 2.13

othcok.3 6 8492 3746 2.27

othsocok.2 5 5672 3746 1.51

othsocok.3 6 9514 3746 2.54

> summary(z.out)

Call: zelig(formula = vote88 ~ pristr + othcok + othsocok, model = "mlogit.bayes",

data = mexico)

Iterations = 1001:11000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

Mean, standard deviation, and quantiles for marginal posterior distributions.

Mean SD 2.5% 50% 97.5%

(Intercept).2 -2.4837 0.4050 -3.2943 -2.4789 -1.6941

(Intercept).3 -2.8815 0.4032 -3.6919 -2.8763 -2.1031
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pristr.2 -0.7259 0.0955 -0.9199 -0.7243 -0.5439

pristr.3 -0.6012 0.0932 -0.7871 -0.6009 -0.4170

othcok.2 1.1091 0.1146 0.8906 1.1066 1.3332

othcok.3 1.2495 0.1116 1.0298 1.2464 1.4777

othsocok.2 0.3521 0.1563 0.0503 0.3515 0.6604

othsocok.3 0.3021 0.1504 0.0133 0.3020 0.5960

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given
x.out.

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)

Model: mlogit.bayes

Number of simulations: 1000

Values of X

(Intercept) pristr othcok othsocok

1 1 1.966887 2.195732 1.395143

attr(,"assign")

[1] 0 1 2 3

Expected Value: E(Y|X)

mean sd 50% 2.5% 97.5%

0.333 0.162 0.231 0.191 0.584

Predicted Value: Y|X

1 2 3

0.559 0.218 0.223

2. Simulating First Differences
Estimating the first difference (and risk ratio) in the probabilities of voting
different candidates when pristr (the strength of the PRI) is set to be
weak (equal to 1) versus strong (equal to 3) while all the other variables
held at their default values.

> x.weak <- setx(z.out, pristr = 1)

> x.strong <- setx(z.out, pristr = 3)

> s.out2 <- sim(z.out, x = x.strong, x1 = x.weak)

> summary(s.out2)
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Model: mlogit.bayes

Number of simulations: 1000

Values of X

(Intercept) pristr othcok othsocok

1 1 3 2.195732 1.395143

attr(,"assign")

[1] 0 1 2 3

Values of X1

(Intercept) pristr othcok othsocok

1 1 1 2.195732 1.395143

attr(,"assign")

[1] 0 1 2 3

Expected Value: E(Y|X)

mean sd 50% 2.5% 97.5%

0.333 0.271 0.158 0.106 0.746

Predicted Value: Y|X

1 2 3

0.716 0.121 0.163

Expected Value (for X1): E(Y|X1)

mean sd 50% 2.5% 97.5%

0.333 0.054 0.313 0.26 0.437

Predicted Value (for X1): Y|X1

1 2 3

0.401 0.303 0.296

First Differences

mean sd 50% 2.5% 97.5%

0 0.224 0.133 -0.363 0.217

2.4 Model

Let Yi be the (unordered) categorical dependent variable for observation i which
takes an integer values j = 1, . . . , J .

• The stochastic component is given by:

Yi ∼ Multinomial(Yi | πij).

where πij = Pr(Yi = j) for j = 1, . . . , J .

• The systematic component is given by
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πij =
exp(xiβj)∑J
k=1 exp(xiβk)

, for j = 1, . . . , J − 1,

where xi is the vector of k explanatory variables for observation i and βj
is the vector of coefficient for category j. Category J is assumed to be the
baseline category.

• The prior for β is given by

βj ∼ Normalk
(
b0, B

−1
0

)
for j = 1, . . . , J − 1,

where b0 is the vector of means for the k explanatory variables and B0 is
the k × k precision matrix (the inverse of a variance-covariance matrix).

2.5 Quantities of Interest

• The expected values (qi$ev) for the multinomial logistics regression model
are the predicted probability of belonging to each category:

Pr(Yi = j) = πij =
exp(xiβj)∑J

k=1 exp(xJβk)
, for j = 1, . . . , J − 1,

and

Pr(Yi = J) = 1−
J−1∑
j=1

Pr(Yi = j)

given the posterior draws of βj for all categories from the MCMC itera-
tions.

• The predicted values (qi$pr) are the draws of Yi from a multinomial
distribution whose parameters are the expected values(qi$ev) computed
based on the posterior draws of β from the MCMC iterations.

• The first difference (qi$fd) in category j for the multinomial logistic model
is defined as

FDj = Pr(Yi = j | X1)− Pr(Yi = j | X).

• The risk ratio (qi$rr) in category j is defined as

RRj = Pr(Yi = j | X1) / Pr(Yi = j | X).

• In conditional prediction models, the average expected treatment effect
(qi$att.ev) for the treatment group in category j is

1

nj

nj∑
i:ti=1

[Yi(ti = 1)− E[Yi(ti = 0)]],
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where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups, and nj is the number of treated observations
in category j.

• In conditional prediction models, the average predicted treatment effect
(qi$att.pr) for the treatment group in category j is

1

nj

nj∑
i:ti=1

[Yi(ti = 1)− ̂Yi(ti = 0)],

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups, and nj is the number of treated observations
in category j.

2.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run:

z.out <- zelig(y ~ x, model = "mlogit.bayes", data)

then you may examine the available information in z.out by using names(z.out),
see the draws from the posterior distribution of the coefficients by using
z.out$coefficients, and view a default summary of information through
summary(z.out). Other elements available through the $ operator are listed
below.

• From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the esti-
mated coefficients β for each category except the baseline category.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.

• From the sim() output object s.out:

– qi$ev: the simulated expected values(probabilities) of each of the J
categories given the specified values of x.

– qi$pr: the simulated predicted values drawn from the multinomial
distribution defined by the expected values(qi$ev) given the specified
values of x.

– qi$fd: the simulated first difference in the expected values of each
of the J categories for the values specified in x and x1.

– qi$rr: the simulated risk ratio for the expected values of each of the
J categories simulated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the
treated from conditional prediction models.
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How to Cite the Bayesian Multinomial Logit Model

Ben Goodrich and Ying Lu. 2007. “mlogit.bayes: Bayesian Multino-
mial Logistic Regression for Dependent Variables with Unordered
Categorical Values ,” in Kosuke Imai, Gary King, and Olivia
Lau, “Zelig: Everyone’s Statistical Software,” http://gking.

harvard.edu/zelig.

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

See also

Bayesian logistic regression is part of the MCMCpack library by Andrew D.
Martin and Kevin M. Quinn [1]. The convergence diagnostics are part of the
CODA library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines
[2].

3 normal.bayes: Bayesian Normal Linear Regres-
sion

Use Bayesian regression to specify a continuous dependent variable as a linear
function of specified explanatory variables. The model is implemented using a
Gibbs sampler. See Section ?? for the maximum-likelihood implementation or
Section ?? for the ordinary least squares variation.

3.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "normal.bayes", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

3.2 Additional Inputs

Use the following arguments to monitor the convergence of the Markov chain:

• burnin: number of the initial MCMC iterations to be discarded (defaults
to 1,000).
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• mcmc: number of the MCMC iterations after burnin (defaults to 10,000).

• thin: thinning interval for the Markov chain. Only every thin-th draw
from the Markov chain is kept. The value of mcmc must be divisible by
this value. The default value is 1.

• verbose: defaults to FALSE. If TRUE, the progress of the sampler (every
10%) is printed to the screen.

• seed: seed for the random number generator. The default is NA, which
corresponds to a random seed of 12345.

• beta.start: starting values for the Markov chain, either a scalar or vector
with length equal to the number of estimated coefficients. The default is
NA, which uses the least squares estimates as the starting values.

Use the following arguments to specify the model’s priors:

• b0: prior mean for the coefficients, either a numeric vector or a scalar.
If a scalar, that value will be the prior mean for all the coefficients. The
default is 0.

• B0: prior precision parameter for the coefficients, either a square matrix
(with the dimensions equal to the number of the coefficients) or a scalar.
If a scalar, that value times an identity matrix will be the prior precision
parameter. The default is 0, which leads to an improper prior.

• c0: c0/2 is the shape parameter for the Inverse Gamma prior on the
variance of the disturbance terms.

• d0: d0/2 is the scale parameter for the Inverse Gamma prior on the vari-
ance of the disturbance terms.

Zelig users may wish to refer to help(MCMCregress) for more information.

3.3 Examples

1. Basic Example
Attaching the sample dataset:

> data(macro)

Estimating linear regression using normal.bayes:

> z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.bayes",

+ data = macro, verbose = FALSE)

How to cite this model in Zelig:

Ben Goodrich, and Ying Lu. 2013.

"normal.bayes: Bayesian Normal Linear Regression"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig
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Checking for convergence before summarizing the estimates:

> geweke.diag(z.out$result$coefficients)

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

(Intercept) gdp capmob trade sigma2

-0.1178 -0.3130 -0.5891 0.5155 -1.6965

> heidel.diag(z.out$result$coefficients)

Stationarity start p-value

test iteration

(Intercept) passed 1 0.756

gdp passed 1 0.963

capmob passed 1 0.355

trade passed 1 0.339

sigma2 passed 1 0.626

Halfwidth Mean Halfwidth

test

(Intercept) passed 6.1773 0.008849

gdp passed -0.3240 0.001244

capmob passed 1.4207 0.003246

trade passed 0.0199 0.000105

sigma2 passed 7.5834 0.011691

> raftery.diag(z.out$result$coefficients)

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

Burn-in Total Lower bound Dependence

(M) (N) (Nmin) factor (I)

(Intercept) 2 3834 3746 1.020

gdp 2 3650 3746 0.974

capmob 2 3771 3746 1.010

trade 2 3680 3746 0.982

sigma2 2 3710 3746 0.990

> summary(z.out)

Call: zelig(formula = unem ~ gdp + capmob + trade, model = "normal.bayes",

data = macro, verbose = FALSE)
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Iterations = 1001:11000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

Mean, standard deviation, and quantiles for marginal posterior distributions.

Mean SD 2.5% 50% 97.5%

(Intercept) 6.1773 0.4515 5.3093 6.1797 7.0878

gdp -0.3240 0.0635 -0.4504 -0.3237 -0.2012

capmob 1.4207 0.1656 1.0927 1.4215 1.7461

trade 0.0199 0.0056 0.0087 0.0200 0.0308

sigma2 7.5834 0.5785 6.5346 7.5526 8.7957

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given
x.out:

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)

Model: normal.bayes

Number of simulations: 1000

Values of X

(Intercept) gdp capmob trade

1 1 3.254223 -0.8914286 57.07625

attr(,"assign")

[1] 0 1 2 3

Expected Value: E(Y|X)

mean sd 50% 2.5% 97.5%

1 4.994 0.148 4.992 4.708 5.283

Predicted Value: Y|X

mean sd 50% 2.5% 97.5%

4.931 2.771 4.936 -0.526 10.407

2. Simulating First Differences
Set explanatory variables to their default(mean/mode) values, with high
(80th percentile) and low (20th percentile) trade on GDP:

> x.high <- setx(z.out, trade = quantile(macro$trade, prob = 0.8))

> x.low <- setx(z.out, trade = quantile(macro$trade, prob = 0.2))
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Estimating the first difference for the effect of high versus low trade on
unemployment rate:

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

Model: normal.bayes

Number of simulations: 1000

Values of X

(Intercept) gdp capmob trade

1 1 3.254223 -0.8914286 79.10131

attr(,"assign")

[1] 0 1 2 3

Values of X1

(Intercept) gdp capmob trade

1 1 3.254223 -0.8914286 37.29106

attr(,"assign")

[1] 0 1 2 3

Expected Value: E(Y|X)

mean sd 50% 2.5% 97.5%

1 5.433 0.192 5.433 5.062 5.815

Predicted Value: Y|X

mean sd 50% 2.5% 97.5%

5.381 2.772 5.389 -0.094 10.787

Expected Value (for X1): E(Y|X1)

mean sd 50% 2.5% 97.5%

1 4.6 0.185 4.601 4.241 4.966

Predicted Value (for X1): Y|X1

mean sd 50% 2.5% 97.5%

4.57 2.768 4.575 -0.889 9.968

First Differences: E(Y|X1) - E(Y|X)

mean sd 50% 2.5% 97.5%

1 -0.833 0.235 -0.836 -1.287 -0.365

3.4 Model

• The stochastic component is given by

εi ∼ Normal(0, σ2)
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where εi = Yi − µi.

• The systematic component is given by

µi = xiβ,

where xi is the vector of k explanatory variables for observation i and β
is the vector of coefficients.

• The semi-conjugate priors for β and σ2 are given by

β ∼ Normalk
(
b0, B

−1
0

)
σ2 ∼ InverseGamma

(
c0
2
,
d0
2

)
where b0 is the vector of means for the k explanatory variables, B0 is the
k × k precision matrix (the inverse of a variance-covariance matrix), and
c0/2 and d0/2 are the shape and scale parameters for σ2. Note that β and
σ2 are assumed to be a priori independent.

3.5 Quantities of Interest

• The expected values (qi$ev) for the linear regression model are calculated
as following:

E(Y ) = xiβ,

given posterior draws of β based on the MCMC iterations.

• The first difference (qi$fd) for the linear regression model is defined as

FD = E(Y | X1)− E(Y | X).

• In conditional prediction models, the average expected treatment effect
(qi$att.ev) for the treatment group is

1∑n
i=1 ti

∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]},

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups.

• In conditional prediction models, the average predicted treatment effect
(att.pr) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups.
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3.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run:

z.out <- zelig(y ~ x, model = "normal.bayes", data)

then you may examine the available information in z.out by using names(z.out),
see the draws from the posterior distribution of the coefficients by using
z.out$coefficients, and view a default summary of information through
summary(z.out). Other elements available through the $ operator are listed
below.

• From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the esti-
mated parameters. The first k columns contain the posterior draws
of the coefficients β, and the last column contains the posterior draws
of the variance σ2.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.

• From the sim() output object s.out:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first difference in the expected values for the
values specified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

How to Cite the Bayesian Gaussian Model

Ben Goodrich and Ying Lu. 2007. “normal.bayes: Bayesian Nor-
mal Linear Regression ,” in Kosuke Imai, Gary King, and Olivia
Lau, “Zelig: Everyone’s Statistical Software,” http://gking.

harvard.edu/zelig.

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.
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See also

Bayesian normal regression is part of the MCMCpack library by Andrew D.
Martin and Kevin M. Quinn [1]. The convergence diagnostics are part of the
CODA library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines
[2].

4 oprobit.bayes: Bayesian Ordered Probit Re-
gression

Use the ordinal probit regression model if your dependent variables are or-
dered and categorical. They may take either integer values or character strings.
The model is estimated using a Gibbs sampler with data augmentation. For a
maximum-likelihood implementation of this models, see Section ??.

4.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "oprobit.bayes", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

4.2 Additional Inputs

zelig() accepts the following arguments to monitor the Markov chain:

• burnin: number of the initial MCMC iterations to be discarded (defaults
to 1,000).

• mcmc: number of the MCMC iterations after burnin (defaults 10,000).

• thin: thinning interval for the Markov chain. Only every thin-th draw
from the Markov chain is kept. The value of mcmc must be divisible by
this value. The default value is 1.

• tune: tuning parameter for the Metropolis-Hasting step. The default
value is NA which corresponds to 0.05 divided by the number of categories
in the response variable.

• verbose: defaults to FALSE If TRUE, the progress of the sampler (every
10%) is printed to the screen.

• seed: seed for the random number generator. The default is NA which
corresponds to a random seed 12345.

• beta.start: starting values for the Markov chain, either a scalar or vector
with length equal to the number of estimated coefficients. The default is
NA, which uses the maximum likelihood estimates as the starting values.
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Use the following parameters to specify the model’s priors:

• b0: prior mean for the coefficients, either a numeric vector or a scalar. If
a scalar value, that value will be the prior mean for all the coefficients.
The default is 0.

• B0: prior precision parameter for the coefficients, either a square matrix
(with dimensions equal to the number of coefficients) or a scalar. If a
scalar value, that value times an identity matrix will be the prior precision
parameter. The default is 0 which leads to an improper prior.

Zelig users may wish to refer to help(MCMCoprobit) for more information.

4.3 Examples

1. Basic Example
Attaching the sample dataset:

> data(sanction)

Estimating ordered probit regression using oprobit.bayes:

> z.out <- zelig(ncost ~ mil + coop, model = "oprobit.bayes",

+ data = sanction, verbose = FALSE)

How to cite this model in Zelig:

Ben Goodrich, and Ying Lu. 2013.

"oprobit.bayes: Bayesian Probit Regression for Dichotomous Dependent Variables"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

Creating an ordered dependent variable:

> sanction$ncost <- factor(sanction$ncost, ordered = TRUE,

+ levels = c("net gain", "little effect",

+ "modest loss", "major loss"))

Checking for convergence before summarizing the estimates:

> heidel.diag(z.out$result$coefficients)

Stationarity start p-value

test iteration

(Intercept) passed 3001 0.190

mil passed 1 0.949

coop passed 1 0.390

gamma2 passed 1 0.909

gamma3 passed 1 0.143

Halfwidth Mean Halfwidth
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test

(Intercept) passed 0.685 0.01225

mil passed -0.285 0.01296

coop passed -0.298 0.00395

gamma2 passed 0.114 0.00986

gamma3 passed 0.431 0.03857

> raftery.diag(z.out$result$coefficients)

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

Burn-in Total Lower bound Dependence

(M) (N) (Nmin) factor (I)

(Intercept) 3 4302 3746 1.15

mil 4 4674 3746 1.25

coop 3 4338 3746 1.16

gamma2 26 28642 3746 7.65

gamma3 88 87948 3746 23.50

> summary(z.out)

Call: zelig(formula = ncost ~ mil + coop, model = "oprobit.bayes",

data = sanction, verbose = FALSE)

Iterations = 1001:11000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

Mean, standard deviation, and quantiles for marginal posterior distributions.

Mean SD 2.5% 50% 97.5%

(Intercept) 0.6954 0.2962 0.1133 0.6967 1.2756

mil -0.2850 0.4666 -1.2066 -0.2824 0.6228

coop -0.2980 0.1421 -0.5856 -0.2966 -0.0222

gamma2 0.1136 0.0534 0.0322 0.1061 0.2386

gamma3 0.4308 0.1064 0.2492 0.4280 0.6800

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given:
x.out.

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)
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Model: oprobit.bayes

Number of simulations: 1000

Values of X

(Intercept) mil coop

1 1 0.1025641 1.807692

attr(,"assign")

[1] 0 1 2

Expected Value: E(Y|X)

mean sd 50% 2.5% 97.5%

little effect 0.450 0.056 0.449 0.342 0.561

major loss 0.045 0.021 0.042 0.013 0.094

modest loss 0.123 0.040 0.120 0.060 0.228

net gain 0.382 0.055 0.381 0.276 0.492

Predicted Value: Y|X

little effect major loss modest loss net gain

0.187 0.273 0.521 0.019

2. Simulating First Differences
Estimating the first difference (and risk ratio) in the probabilities of incur-
ring different level of cost when there is no military action versus military
action while all the other variables held at their default values.

> x.high <- setx(z.out, mil=0)

> x.low <- setx(z.out, mil=1)

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

Model: oprobit.bayes

Number of simulations: 1000

Values of X

(Intercept) mil coop

1 1 0 1.807692

attr(,"assign")

[1] 0 1 2

Values of X1

(Intercept) mil coop

1 1 1 1.807692

attr(,"assign")

[1] 0 1 2

Expected Value: E(Y|X)
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mean sd 50% 2.5% 97.5%

little effect 0.438 0.058 0.438 0.328 0.554

major loss 0.045 0.021 0.042 0.013 0.094

modest loss 0.124 0.040 0.120 0.060 0.229

net gain 0.393 0.058 0.392 0.283 0.508

Predicted Value: Y|X

little effect major loss modest loss net gain

0.149 0.238 0.578 0.035

Expected Value (for X1): E(Y|X1)

mean sd 50% 2.5% 97.5%

little effect 0.546 0.161 0.548 0.235 0.845

major loss 0.041 0.020 0.038 0.011 0.088

modest loss 0.108 0.040 0.104 0.042 0.201

net gain 0.305 0.145 0.290 0.074 0.623

Predicted Value (for X1): Y|X1

little effect major loss modest loss net gain

0.612 0.096 0.186 0.106

First Differences: E(Y|X1) - E(Y|X)

mean sd 50% 2.5% 97.5%

little effect 0.108 0.170 0.111 -0.227 0.426

major loss -0.004 0.007 -0.001 -0.023 0.002

modest loss -0.016 0.022 -0.008 -0.076 0.005

net gain -0.088 0.153 -0.102 -0.345 0.241

4.4 Model

Let Yi be the ordered categorical dependent variable for observation i which
takes an integer value j = 1, . . . , J .

• The stochastic component is described by an unobserved continuous vari-
able, Y ∗

i ,

Y ∗
i ∼ Normal(µi, 1).

Instead of Y ∗
i , we observe categorical variable Yi,

Yi = j if τj−1 ≤ Y ∗
i ≤ τj for j = 1, . . . , J.

where τj for j = 0, . . . , J are the threshold parameters with the following
constraints, τl < τm for l < m, and τ0 = −∞, τJ =∞.

The probability of observing Yi equal to category j is,

Pr(Yi = j) = Φ(τj | µi)− Φ(τj−1 | µi) for j = 1, . . . , J
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where Φ(· | µi) is the cumulative distribution function of the Normal
distribution with mean µi and variance 1.

• The systematic component is given by

µi = xiβ,

where xi is the vector of k explanatory variables for observation i and β
is the vector of coefficients.

• The prior for β is given by

β ∼ Normalk
(
b0, B

−1
0

)
where b0 is the vector of means for the k explanatory variables and B0 is
the k × k precision matrix (the inverse of a variance-covariance matrix).

4.5 Quantities of Interest

• The expected values (qi$ev) for the ordered probit model are the predicted
probability of belonging to each category:

Pr(Yi = j) = Φ(τj | xiβ)− Φ(τj−1 | xiβ),

given the posterior draws of β and threshold parameters τ from the MCMC
iterations.

• The predicted values (qi$pr) are the observed values of Yi given the ob-
servation scheme and the posterior draws of β and cut points τ from the
MCMC iterations.

• The first difference (qi$fd) in category j for the ordered probit model is
defined as

FDj = Pr(Yi = j | X1)− Pr(Yi = j | X).

• The risk ratio (qi$rr) in category j is defined as

RRj = Pr(Yi = j | X1) / Pr(Yi = j | X).

• In conditional prediction models, the average expected treatment effect
(qi$att.ev) for the treatment group in category j is

1

nj

nj∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]},

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups, and nj is the number of observations in the
treatment group that belong to category j.
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• In conditional prediction models, the average predicted treatment effect
(qi$att.pr) for the treatment group in category j is

1

nj

nj∑
i:ti=1

[Yi(ti = 1)− ̂Yi(ti = 0)],

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups, and nj is the number of observations in the
treatment group that belong to category j.

4.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run:

z.out <- zelig(y ~ x, model = "oprobit.bayes", data)

then you may examine the available information in z.out by using names(z.out),
see the draws from the posterior distribution of the coefficients by using
z.out$coefficients, and view a default summary of information through
summary(z.out). Other elements available through the $ operator are listed
below.

• From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the esti-
mated coefficients β and threshold parameters τ . Note, element τ1 is
normalized to 0 and is not returned in the coefficients object.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.

• From the sim() output object s.out:

– qi$ev: the simulated expected values (probabilities) of each of the J
categories for the specified values of x.

– qi$pr: the simulated predicted values (observed values) for the spec-
ified values of x.

– qi$fd: the simulated first difference in the expected values of each
of the J categories for the values specified in x and x1.

– qi$rr: the simulated risk ratio for the expected values of each of the
J categories simulated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the
treated from conditional prediction models.
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How to Cite the oprobit.bayes Zelig Model

Ben Goodrich and Ying Lu. 2007. “oprobit.bayes: Bayesian Or-
dered Probit Regression,” in Kosuke Imai,Gary King, and Olivia
Lau, “Zelig: Everyone’s Statistical Software,” http://gking.

harvard.edu/zelig.

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

See also

Bayesian ordinal probit regression is part of the MCMCpack library by Andrew
D. Martin and Kevin M. Quinn [1]. The convergence diagnostics are part of the
CODA library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines
[2].

5 poisson.bayes: Bayesian Poisson Regression

Use the Poisson regression model if the observations of your dependent variable
represents the number of independent events that occur during a fixed period
of time. The model is fit using a random walk Metropolis algorithm. For a
maximum-likelihood estimation of this model see Section ??.

5.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "poisson.bayes", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

5.2 Additional Inputs

Use the following argument to monitor the Markov chain:

• burnin: number of the initial MCMC iterations to be discarded (defaults
to 1,000).

• mcmc: number of the MCMC iterations after burnin (defaults to 10,000).
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• thin: thinning interval for the Markov chain. Only every thin-th draw
from the Markov chain is kept. The value of mcmc must be divisible by
this value. The default value is 1.

• tune: Metropolis tuning parameter, either a positive scalar or a vector
of length k, where k is the number of coefficients. The tuning parameter
should be set such that the acceptance rate of the Metropolis algorithm is
satisfactory (typically between 0.20 and 0.5). The default value is 1.1.

• verbose: default to FALSE. If TRUE, the progress of the sampler (every
10%) is printed to the screen.

• seed: seed for the random number generator. The default is NA which
corresponds to a random seed of 12345.

• beta.start: starting values for the Markov chain, either a scalar or vector
with length equal to the number of estimated coefficients. The default is
NA, such that the maximum likelihood estimates are used as the starting
values.

Use the following parameters to specify the model’s priors:

• b0: prior mean for the coefficients, either a numeric vector or a scalar.
If a scalar, that value will be the prior mean for all the coefficients. The
default is 0.

• B0: prior precision parameter for the coefficients, either a square matrix
(with the dimensions equal to the number of the coefficients) or a scalar.
If a scalar, that value times an identity matrix will be the prior precision
parameter. The default is 0, which leads to an improper prior.

Zelig users may wish to refer to help(MCMCpoisson) for more information.

5.3 Examples

1. Basic Example
Attaching the sample dataset:

> data(sanction)

Estimating the Poisson regression using poisson.bayes:

> z.out <- zelig(num ~ target + coop, model = "poisson.bayes",

+ data = sanction, verbose = FALSE)

How to cite this model in Zelig:

Ben Goodrich, and Ying Lu. 2013.

"poisson.bayes"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig
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Checking convergence diagnostics before summarizing the estimates:

> geweke.diag(z.out$result$coefficients)

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

(Intercept) target coop

2.5342332 -0.0007325 -2.3642654

> heidel.diag(z.out$result$coefficients)

Stationarity start p-value

test iteration

(Intercept) passed 1 0.107

target passed 1 0.852

coop passed 1 0.175

Halfwidth Mean Halfwidth

test

(Intercept) passed -0.9798 0.01096

target failed -0.0176 0.00370

coop passed 1.2109 0.00298

> raftery.diag(z.out$result$coefficients)

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

Burn-in Total Lower bound Dependence

(M) (N) (Nmin) factor (I)

(Intercept) 21 22551 3746 6.02

target 20 21849 3746 5.83

coop 20 21706 3746 5.79

> summary(z.out)

Call: zelig(formula = num ~ target + coop, model = "poisson.bayes",

data = sanction, verbose = FALSE)

Iterations = 1001:11000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

Mean, standard deviation, and quantiles for marginal posterior distributions.
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Mean SD 2.5% 50% 97.5%

(Intercept) -0.9798 0.1746 -1.3310 -0.9777 -0.6456

target -0.0176 0.0567 -0.1299 -0.0195 0.0944

coop 1.2109 0.0470 1.1208 1.2101 1.3066

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given
x.out.

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)

Model: poisson.bayes

Number of simulations: 1000

Values of X

(Intercept) target coop

1 1 2.141026 1.807692

attr(,"assign")

[1] 0 1 2

Expected Value: E(Y|X)

mean sd 50% 2.5% 97.5%

1 3.235 0.238 3.235 2.777 3.705

Predicted Value: Y|X

mean sd 50% 2.5% 97.5%

1 3.244 1.812 3 0 7

2. Simulating First Differences
Estimating the first difference in the number of countries imposing sanc-
tions when the number of targets is set to be its maximum versus its
minimum :

> x.max <- setx(z.out, target = max(sanction$target))

> x.min <- setx(z.out, target = min(sanction$target))

> s.out2 <- sim(z.out, x = x.max, x1 = x.min)

> summary(s.out2)

Model: poisson.bayes

Number of simulations: 1000

Values of X
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(Intercept) target coop

1 1 3 1.807692

attr(,"assign")

[1] 0 1 2

Values of X1

(Intercept) target coop

1 1 1 1.807692

attr(,"assign")

[1] 0 1 2

Expected Value: E(Y|X)

mean sd 50% 2.5% 97.5%

1 3.192 0.294 3.183 2.642 3.804

Predicted Value: Y|X

mean sd 50% 2.5% 97.5%

1 3.218 1.824 3 0 7

Expected Value (for X1): E(Y|X1)

mean sd 50% 2.5% 97.5%

1 3.306 0.306 3.3 2.729 3.944

Predicted Value (for X1): Y|X1

mean sd 50% 2.5% 97.5%

1 3.308 1.851 3 0 7

First Differences: E(Y|X1) - E(Y|X)

mean sd 50% 2.5% 97.5%

1 0.115 0.367 0.127 -0.607 0.834

5.4 Model

Let Yi be the number of independent events that occur during a fixed time
period.

• The stochastic component is given by

Yi ∼ Poisson(λi)

where λi is the mean and variance parameter.

• The systematic component is given by

λi = exp(xiβ)

where xi is the vector of k explanatory variables for observation i and β
is the vector of coefficients.
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• The prior for β is given by

β ∼ Normalk
(
b0, B

−1
0

)
where b0 is the vector of means for the k explanatory variables and B0 is
the k × k precision matrix (the inverse of a variance-covariance matrix).

5.5 Quantities of Interest

• The expected values (qi$ev) for the Poisson model are calculated as fol-
lowing:

E(Y | X) = λi = exp(xiβ),

given the posterior draws of β based on the MCMC iterations.

• The predicted values (qi$pr) are draws from the Poisson distribution with
parameter λi.

• The first difference (qi$fd) for the Poisson model is defined as

FD = E(Y | X1)− E(Y | X).

• In conditional prediction models, the average expected treatment effect
(qi$att.ev) for the treatment group is

1∑n
i=1 ti

∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]},

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups.

• In conditional prediction models, the average predicted treatment effect
(qi$att.pr) for the treatment group is

1∑n
i=1 ti

∑
i:ti=1

[Yi(ti = 1)− ̂Yi(ti = 0)],

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups.

5.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run:

z.out <- zelig(y ~ x, model = "poisson.bayes", data)
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you may examine the available information in z.out by using names(z.out),
see the draws from the posterior distribution of the coefficients by using
z.out$coefficients, and view a default summary of information through
summary(z.out). Other elements available through the $ operator are listed
below.

• From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the esti-
mated parameters.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.

• From the sim() output object s.out:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first difference in the expected values for the
values specified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the
treated from conditional prediction models.

How to Cite the poisson.bayes Zelig Model

Ben Goodrich and Ying Lu. 2007. “poisson.bayes: Bayesian Poisson
Regression,” in Kosuke Imai, Gary King, and Olivia Lau, “Zelig:
Everyone’s Statistical Software,” http://gking.harvard.edu/

zelig.

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.
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See also

Bayesian poisson regression is part of the MCMCpack library by Andrew D.
Martin and Kevin M. Quinn [1]. The convergence diagnostics are part of the
CODA library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines
[2].

6 probit.bayes: Bayesian Probit Regression

Use the probit regression model for model binary dependent variables specified
as a function of a set of explanatory variables. The model is estimated us-
ing a Gibbs sampler. For other models suitable for binary response variables,
see Bayesian logistic regression(Section 1), maximum likelihood logit regression
(Section ??), and maximum likelihood probit regression (Section ??).

6.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "probit.bayes", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

6.2 Additional Inputs

Using the following arguments to monitor the Markov chains:

• burnin: number of the initial MCMC iterations to be discarded (defaults
to 1,000).

• mcmc: number of the MCMC iterations after burnin (defaults to 10,000).

• thin: thinning interval for the Markov chain. Only every thin-th draw
from the Markov chain is kept. The value of mcmc must be divisible by
this value. The default value is 1.

• verbose: defaults to FALSE. If TRUE, the progress of the sampler (every
10%) is printed to the screen.

• seed: seed for the random number generator. The default is NA which
corresponds to a random seed of 12345.

• beta.start: starting values for the Markov chain, either a scalar or vector
with length equal to the number of estimated coefficients. The default is
NA, such that the maximum likelihood estimates are used as the starting
values.

Use the following parameters to specify the model’s priors:

• b0: prior mean for the coefficients, either a numeric vector or a scalar. If
a scalar value, that value will be the prior mean for all the coefficients.
The default is 0.
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• B0: prior precision parameter for the coefficients, either a square matrix
(with the dimensions equal to the number of the coefficients) or a scalar.
If a scalar value, that value times an identity matrix will be the prior
precision parameter. The default is 0, which leads to an improper prior.

Use the following arguments to specify optional output for the model:

• bayes.resid: defaults to FALSE. If TRUE, the latent Bayesian residuals for
all observations are returned. Alternatively, users can specify a vector of
observations for which the latent residuals should be returned.

Zelig users may wish to refer to help(MCMCprobit) for more information.

6.3 Examples

1. Basic Example
Attaching the sample dataset:

> data(turnout)

Estimating the probit regression using probit.bayes:

> z.out <- zelig(vote ~ race + educate, model = "probit.bayes",

+ data = turnout, verbose = FALSE)

How to cite this model in Zelig:

Ben Goodrich, and Ying Lu. 2013.

"probit.bayes"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

Checking for convergence before summarizing the estimates:

> geweke.diag(z.out$result$coefficients)

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

(Intercept) racewhite educate

-0.3037 -0.8835 0.7866

> heidel.diag(z.out$result$coefficients)

Stationarity start p-value

test iteration

(Intercept) passed 1 0.1891

racewhite passed 1 0.7231

educate passed 1 0.0785
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Halfwidth Mean Halfwidth

test

(Intercept) passed -0.7327 0.004195

racewhite passed 0.2989 0.002683

educate passed 0.0977 0.000331

> raftery.diag(z.out$result$coefficients)

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

Burn-in Total Lower bound Dependence

(M) (N) (Nmin) factor (I)

(Intercept) 4 4954 3746 1.32

racewhite 4 4832 3746 1.29

educate 4 5080 3746 1.36

> summary(z.out)

Call: zelig(formula = vote ~ race + educate, model = "probit.bayes",

data = turnout, verbose = FALSE)

Iterations = 1001:11000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

Mean, standard deviation, and quantiles for marginal posterior distributions.

Mean SD 2.5% 50% 97.5%

(Intercept) -0.7327 0.1281 -0.9854 -0.7325 -0.4826

racewhite 0.2989 0.0848 0.1359 0.2983 0.4671

educate 0.0977 0.0096 0.0791 0.0976 0.1166

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given:
x.out

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)

Model: probit.bayes

Number of simulations: 1000
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Values of X

(Intercept) racewhite educate

1 1 1 12.06675

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race

[1] "contr.treatment"

Expected Value: E(Y|X)

mean sd 50% 2.5% 97.5%

1 0.772 0.01 0.772 0.751 0.791

Predicted Value: Y|X

0 1

1 0.236 0.764

2. Simulating First Differences
Estimating the first difference (and risk ratio) in individual’s probability of
voting when education is set to be low (25th percentile) versus high (75th
percentile) while all the other variables are held at their default values:

> x.high <- setx(z.out, educate = quantile(turnout$educate, prob = 0.75))

> x.low <- setx(z.out, educate = quantile(turnout$educate, prob = 0.25))

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

Model: probit.bayes

Number of simulations: 1000

Values of X

(Intercept) racewhite educate

1 1 1 14

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race

[1] "contr.treatment"

Values of X1

(Intercept) racewhite educate

1 1 1 10

attr(,"assign")

39



[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race

[1] "contr.treatment"

Expected Value: E(Y|X)

mean sd 50% 2.5% 97.5%

1 0.825 0.01 0.825 0.803 0.844

Predicted Value: Y|X

0 1

1 0.172 0.828

Expected Value (for X1): E(Y|X1)

mean sd 50% 2.5% 97.5%

1 0.706 0.013 0.706 0.681 0.731

Predicted Value (for X1): Y|X1

0 1

1 0.29 0.71

First Differences: E(Y|X1)-E(Y|X)

mean sd 50% 2.5% 97.5%

1 -0.118 0.012 -0.118 -0.141 -0.096

6.4 Model

Let Yi be the binary dependent variable for observation i which takes the value
of either 0 or 1.

• The stochastic component is given by

Yi ∼ Bernoulli(πi)

= πYi
i (1− πi)1−Yi ,

where πi = Pr(Yi = 1).

• The systematic component is given by

πi = Φ(xiβ),

where Φ(·) is the cumulative density function of the standard Normal
distribution with mean 0 and variance 1, xi is the vector of k explanatory
variables for observation i, and β is the vector of coefficients.

• The prior for β is given by

β ∼ Normalk
(
b0, B

−1
0

)
40



where b0 is the vector of means for the k explanatory variables and B0 is
the k × k precision matrix (the inverse of a variance-covariance matrix).

6.5 Quantities of Interest

• The expected values (qi$ev) for the probit model are the predicted prob-
ability of a success:

E(Y | X) = πi = Φ(xiβ),

given the posterior draws of β from the MCMC iterations.

• The predicted values (qi$pr) are draws from the Bernoulli distribution
with mean equal to the simulated expected value πi.

• The first difference (qi$fd) for the probit model is defined as

FD = Pr(Y = 1 | X1)− Pr(Y = 1 | X).

• The risk ratio (qi$rr)is defined as

RR = Pr(Y = 1 | X1) / Pr(Y = 1 | X).

• In conditional prediction models, the average expected treatment effect
(qi$att.ev) for the treatment group is

1∑
ti

∑
i:ti=1

[Yi(ti = 1)− E[Yi(ti = 0)]],

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups.

• In conditional prediction models, the average predicted treatment effect
(qi$att.pr) for the treatment group is

1∑
ti

∑
i:ti=1

[Yi(ti = 1)− ̂Yi(ti = 0)],

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups.

6.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run:

z.out <- zelig(y ~ x, model = "probit.bayes", data)
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then you may examine the available information in z.out by using names(z.out),
see the draws from the posterior distribution of the coefficients by using
z.out$coefficients, and view a default summary of information through
summary(z.out). Other elements available through the $ operator are listed
below.

• From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the esti-
mated parameters.

– zelig.data: the input data frame if save.data = TRUE.

– bayes.residuals: When bayes.residual is TRUE or a set of obser-
vation numbers is given, this object contains the posterior draws of
the latent Bayesian residuals of all the observations or the observa-
tions specified by the user.

– seed: the random seed used in the model.

• From the sim() output object s.out:

– qi$ev: the simulated expected values (probabilities) for the specified
values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first difference in the expected values for the
values specified in x and x1.

– qi$rr: the simulated risk ratio for the expected values simulated
from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the
treated from conditional prediction models.

How to Cite the probit.bayes Zelig model

Ben Goodrich and Ying Lu. 2007. “probit.bayes: Bayesian Pro-
bit Regression for Dichotomous Dependent Variable,” in Kosuke
Imai, Gary King, and Olivia Lau, “Zelig: Everyone’s Statistical
Software,” http://gking.harvard.edu/zelig.

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.
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Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

See also

Bayesian probit regression is part of the MCMCpack library by Andrew D.
Martin and Kevin M. Quinn [1]. The convergence diagnostics are part of the
CODA library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines
[2].
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